The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
 0  X  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  0  0  0  0  0  0  0  0  0  X  X  0  X  X  0  X  X  0  X  X  0  0  X  X  X  0  0  X  X  X  X  X  0  0  0  0  0  0  X  X
 0  0  X  0  0  0  0  0  0  0  X  X  X  X  X  X  X  X  X  0  X  X  0  0  X  X  X  X  0  0  0  0  0  0  0  0  0  0  0  0  X  X  0  X  X  0  X  X  0  X  X  0  X  X  X  X  0  X  X  X  X  0  0  0  0  0  0  0  X  X  X  X
 0  0  0  X  0  0  0  X  X  X  X  X  0  X  X  0  0  0  0  0  0  0  0  0  X  X  X  X  X  X  X  X  0  0  0  0  X  X  X  X  X  0  X  X  0  X  X  X  0  X  X  0  0  0  0  X  X  0  0  0  X  X  0  0  0  0  0  X  X  0  0  0
 0  0  0  0  X  0  X  X  X  0  0  0  0  X  X  X  X  0  0  0  X  X  X  X  X  X  0  0  0  0  X  X  0  0  X  X  X  X  0  0  0  0  0  0  0  0  X  X  0  X  X  0  X  0  X  0  X  X  0  X  0  X  X  X  0  0  X  X  0  0  0  0
 0  0  0  0  0  X  X  0  X  X  0  X  X  X  0  0  X  0  X  X  X  0  0  X  0  X  X  0  0  X  X  0  0  X  X  0  0  X  X  0  0  0  0  X  X  X  X  0  X  0  X  0  0  X  X  X  X  X  0  0  0  0  0  X  0  X  X  0  0  0  0  0

generates a code of length 72 over Z2[X]/(X^2) who�s minimum homogenous weight is 68.

Homogenous weight enumerator: w(x)=1x^0+16x^68+94x^72+16x^76+1x^144

The gray image is a linear code over GF(2) with n=144, k=7 and d=68.
This code was found by Heurico 1.16 in 0.0641 seconds.